Pointers, Virtual Functions and Polymorphism —0 275
Program 9.11 produces the following output:

bptr points base object

b = 100

bptr now points to derived object
b = 200

dptr is derived type pointer

b = 200

d = 300

using ((DC *)bptr)

b = 200

d = 400

/

We have used the statement
bptr -> show();

two times. First, when bptr points to the base object, and second when bptr is made to
point to the derived object. But, both the times, it executed BC::show() function and
displayed the content of the base object. However, the statements

dptr -> show(); 7
((DC *) bptr) -> show(); // cast bptr to DC type

display the contents of the derived object. This shows that, although a base pointer can

be made to point to any number of derived objects, it cannot directly access the members
defined by a derived class.

- _J

I9.6 Virtual Functions

As mentioned earlier, polymorphism refers to the property by which objects belonging to
different classes are able to respond to the same message, but in different forms. An essential
requirement of polymorphism is therefore the ability to refer to objects without any regard
to their classes. This necessitates the use of a single pointer variable to refer to the objects
of different classes. Here, we use the pointer to base class to refer to all the derived objects.
But, we just discovered that a base pointer, even when it is made to contain the address of
a derived class, always executes the function in the base class. The compiler simply ignores
the contents of the pointer and chooses the member function that matches the type of the
pointer. How do we then achieve polymorphism?. It is achieved using what is known as
‘virtual’ functions.



276e

Object-Oriented Programming with C++

When we use the same function name in both the base and derived classes, the function

in base class is declared as virtual using the keyword virtual preceding its normal
declaration. When a function is made virtual, C++ determines which function to use at run
time based on the type of object pointed to by the base pointer, rather than the type of the
pointer. Thus, by making the base pointer to point to different objects, we can execute

different versions of the virtual function. Program 9.12 illustrates this point.

VIRTUAL FUNCTIONS

#include <iostream>

using namespace std;

class Base

{

},; .

ass Derived : public Base

cl

{

}s

public:

void

display() {cout << "\n Display base ";}

virtual void show() {cout << "\n show base";}

public:
void display() {cout << "\n Display derived";}

void

show() {cout << "\n show derived";}

. int main()
{ \

Base B;
Derived D;
Base *bptr;
cout << "\n bptr points to Base \n";
bptr = &B; ,
bptr -> display(); // calls Base version
bptr -> show(); // calls Base version
cout << "\n\n bptr points to Derived\n";
bptr = &D;
bptr -> display(); // calls Base version
bptr -> show(); // calls Derived version
return 0;

PROGRAM 9.12




Pointers, Virtual Functions and Polymorphism —e 277
The output of Program 9.12 would be:
bptr points to Base

Display base
Show base

bptr points to Derived

Display base
Show derived

— rote \

When bptr is made to point to the object D, the statement

bptr -> display();

calls only the function associated with the Base (i.e. Base :: display( )), whereas the
statement

bptr -> show();

calls the Derived version of show(). This is because the function display() has not
Qeen made virtual in the Base class. . )

One important point to remember is that, we must access virtual functions through the
use of a pointer declared as a pointer to the base class. Why can't we use the object name
(with the dot operator) the same way as any other member function to call the virtual
functions?. We can, but remember, run time polymorphism is achieved only when a virtual
function is accessed through a pointer to the base class.

Let us take an example where

virtual functions are imple- ‘ media i
mented in practice. Consider a :
book shop which sells both books
and video-tapes. We can create a
class known as media that stores
the title and price of a publication.
We can then create two derived
classes, one for storing the num-
ber of pages in a book and another Fig. 9.2 ¢ The class hierarchy for the book shop
for storing the playing time of a ‘
tape. Figure 9.2 shows the class
hierarchy for the book shop.

book \ tape




5 e

280e

Object-Oriented Programming with C++

tape tapel(title, price, time);

media* list[2];

1ist[0]
list[1]

cout <<

cout <<
1ist[0]

cout <<

reSult 0

= &bookl;
= &tapel;

"\n MEDIA DETAILS";

"\n ......BOOK...... " :
-> display(); // display book deta11s

"N LG TAPE Lt :
-> d1sp1ay() // dzsp]ay tape detalls

The output of Program 9.13 would be:

ENTER BOOK DETAILS
Title:Programming_in_ANSI C

Price: 88
Pages: 400

ENTER TAPE DETAILS
Title: Computing Concepts

Price: 90

Play time (mins): 55

MEDIA DETAILS

Title:Programming_in ANSI C

Pages: 400
Price: 88

Title: Computing Concepts

Play time: 55mins
Price: 90

Rules for Virtual Functions

PROGRAM 9.13

When virtual functions are created for implementing late binding, we should observe some
basic rules that satisfy the compiler requirements:




Pointers, Virtual Functions and Polymorphism — 281

The virtual functions must be members of some class.
They cannot be static members.

They are accessed by using object pointers.

A virtual function can be a friend of another class.

AT

A virtual function in a base class must be defined, even though it may not be
used.

6. The prototypes of the base class version of a virtual function and all the derived
class versions must be identical. If two functions with the same name have differ-
ent prototypes, C++ considers them as overloaded functions, and the virtual func-
tion mechanism is ignored.

7. We cannot have virtual constructors, but we can have virtual destructors.
8. While a base pointer can point to any type of the derived object, the reverse is not

true. That is to say, we cannot use a pointer to a derived class to access an object of
the base type.

9. When a base pointer points to a derived class, incrementing or decrementing it will
not make it to point to the next object of the derived class. It is incremented or
decremented only relative to its base type. Therefore, we should not use this method
to move the pointer to the next object.

10. Ifa virtual function is defined in the base class, it need not be necessarily redefined
in the derived class. In such cases, calls will invoke the base function.

I9.7 Pure Virtual Functions

It is normal practice to declare a function virtual inside the base class and redefine it in the
derived classes. The function inside the base class is seldom used for performing any task. It
only serves as a placeholder. For example, we have not defined any object of class media and
therefore the function display() in the base class has been defined 'empty'. Such functions
are called "do-nothing" functions.

A "do-nothing" function may be defined as follows:
virtual void display() = 0;

Such functions are called pure virtual functions. A pure virtual function is a function
declared in a base class that has no definition relative to the base class. In such cases, the
compiler requires each derived class to either define the function or redeclare it as a pure
virtual function. Remember that a class containing pure virtual functions cannot be used to
declare any objects of its own. As stated earlier, such classes are called abstract base classes.
The main objective of an abstract base class is to provide some traits to the derived classes
and to create a base pointer required for achieving run time polymorphism.



284 ¢

Object-Oriented Programming with C++

9.6 What are the applications of this pointer?
9.7 What is a virtual function?
9.8 Why do we need virtual functions?

9.9 When do we make a virtual function "pure"? What are the implications of making
a function a pure virtual function?

9.10 State which of the following statements are TRUE or FALSE.

(a)
(b)

(c)
(d)
(e)
®

(g)

Virtual functions are used to create pointers to base classes.

Virtual functions allow us to use the same function call to invoke member
functions of objects of different classes.

A pointer to a base class cannot be made to point to objects of derived class.
this pointer points to the object that is currently used to invoke a function.

this pointer can be used like any other pointer to access the members of the
object it points to.

this pointer can be made to point to any object by assigning the address of
the object.

Pure virtual functions force the programmer to redefine the virtual function
inside the derived classes.

I Debugging Exercises

9.1 Identify the error in the following program.

#include <iostream.h>
class Info

{

char *name;
int number;

public:

void getInfo()
{

cout << "Info::getInfo ";
getName();

void getName()
{

cout << "Info::getName ";



9.2

class Name: public Info

{

char *name;

pubtic:
void getName()
{
cout << "Name
}

}s

void main()

{

Info *p;
Name n;
p = n;
p->getInfo();
}
/*

Pointers, Virtual Functions and Polymorphism

::getName ";

Identify the error in the following program.

#include <iostream.h>
class Person
{
int age;
public:
Person()
{
}
Person(int age)

{

this.age = age;

}

Person& operator < (Person &p)

{

return age < p.age ? p: *this;

}
int getAge()
{

return age;

285



288 ¢

Object-Oriented Programming with C++

int a,b;
public:
A(int x = 0, int y)
{
a = x;
b=1y;
}

virtual void print();

bs
class B: public A
{

private:
float p,q;
public:
B(int m, int n, float u, float v)
{
p=u
q =V,
}

B() {p =q =03}
void input(float u, float v);
virtual void print(float);

b

void A::print(void)

{

}
void B::print(float)
{

}
void B::input(float x, float y)

cout << A values: << a <<""<< ph <<"\n";

cout <<B values:<< u <<""<< y <<"\n";

P =X
F

main()

A al(10,20), *ptr;

B bl;
bl.input(7.5,3.142);
ptr = &al;
ptr->print();

ptr = &bl;
ptr->print();




Pointers, Virtual Functions and Polymorphism 0289

§ Programming Exercises

9.1

g9

9.3

Create a buse class called shape. Use this class to store two double type values
that could be used to compute the area of figures. Derive two specific classes called
triangle and rectangle from (he base shape. Add to the base class, a member
function get_data() to initialize base class data members and another member
function display_area() to compute and display the area of figures. Make
display_area() as a virtual function and redefine this function in the derived
classes to suit their requiremernts.
Using these three classes, design a program that will accept dimensions of a triangle
or a rectangle interactively, and display the area.
Remeniber the two values given as input will be treated as lengths of two sides in
the case of rectangles, and as base and height in the case of triangles, and used as
follows:

Area of rectangie = x * vy

Area of triangle = 1/2 * x * y

Extend the above program to display the area of circles. This requires addition of

a new derived class ‘circle’ that computes the area of a circle. Remember, for a

cirele we need only one value, its radius, but the get_datal) function in the base

class requires two values to be passed. (Hint: Make the second argument of

set_datal() function as a default one with zero value.)

Run the above program with the following modifications:

(a) Remove the definition of display_area() from one of the derived classes.

(by In addition to the above change, declare the display_area() as virtual in
the base class shape.

Comment on the output in each case.



292e ’ Object-Oricnted Programming witin Ci -

|10.3 C++ Stream Classes

The C++ I/O system contains a hierarchy of classes that are used to define various streams
to deal with both the console and disk files. These classes are called stream classes.
Figure 10.2 shows the hierarchy of the stream classes used for input and output operations
with the console unit. These classes are declared in the header file jostream . This file should
be included in all the programs that communicate with the console unit.

[
] 108 i
[ |
!
I
y Ppointer
— [Ty
istream | i streambuf |
e i ]
input I output
| (-
A ‘
| lostream i |
i — [ |
|
| |
S S N S
) ) ) ) \ : )
istream_withassign ! iostream_withassign | i ostream_withassign
. _ g | | g

Fig.10.2 < Streain dlasses for console [/O operations

R,

As seen in the Fig. 10.2, ios is the base clasz for istream (input strcam) and ostream
(output stream) which are, in turn, base classes for iostream (input/output stream). The
class ios is declared as the virtual base class so that only one copy of its members are
inherited by the iostream.

The class ios provides the basic support for formatted ind unformatted IO operations.
The class istream provides the facilities for formatted and unformatted input while the
class ostream (through inheritance) provides the facilities for formatted cutput. The class
iostream provides the facilities for handling both input and output streams. Three classes.
namely, istream_withassign, ostream_withassign. and iostream withassign add
assignment operators to these classes. Table 10.1 gives the details of these classes.

|10.4 Unformatted /O Operations

Overloaded Operators >> and <<

We have used the objects ¢in and cout (pre-defined in the iostream file) for the input and
output of data of various types. This has been made possible by overloading the operators
>> and << to recognize all the basic C++ types. The >> operater is overloaded in the



Managing Console I/O Operations 9293

Table 10.1 Stream classes for console operations

Class name
ios
(General input/output stream class)

istream
(input stream)

ostream
(output stream)

iostream
(input/output stream)

streambuf

Contents

Contains basic facilities that are used by all other &
input and output classes
Also contains a pointer to a buffer object (streambuf
object)
Declares constants and functions that are necessary
for handling formatted input and output operations |

Inherits the properties of ios
Declares input functions such as get(), getline() j§
and read()

Contains overloaded extraction operator >>

Inherits the properties of ios
Declares output functions put() and write()
Contains overloaded insertion operator <<

Inherits the properties of ios istream and ostream §
through multiple inheritance and thus contains all |
the input and output functions ;
Provides an interface to physical devices through

buffers
Acts as a base for filebuf class used ios files

istream class and << is overloaded in the ostream class. The following is the general
format for reading data from the keyboard:

cin >> variablel >> variable2 >> ..

. >> variableN

variablel, variable2, ... are valid C++ variable names that have been declared already. This
statement will cause the computer to stop the execution and look for input data from the
keyboard. The input data for this statement would be:

datal dataZ ...... dataN

The input data are separated by white spaces and should match the type of variable in
the cin list. Spaces, newlines and tabs will be skipped.

The operator >> reads the data character by character and assigns it to the indicated
location. The reading for a variable will be terminated at the encounter of a white space or a
character that does not match the destination type. For example, consider the following code:

int code;
cin >> code;

Suppose the following data is given as input:

4258D



294 Object-Oriented Programming with C++

The operator will read the characters upto 8 and the value 4258 is assigned to code. The
character D remains in the input stream and will be input to the next cin statement. The
general form for displaying data on the screen is:

[cout <<iteml<<item2 <<....<< itemN]

The items item 1 through itemN may be variables or constants of any basic type. We have
used such statements in a number of examples illustrated in previous chapters.

put() and get() Functions

The classes istream and ostream define two member functions get() and put() respectively
to handle the single character input/output operations. There are two types of get() functions.
We can use both get(char *) and get(void) prototypes to fetch a character including the
blank space, tab and the newline character. The get(char *) version assigns the input
character to its argument and the get(void) version returns the input character.

Since these functions are members of the input/output stream classes, we must invoke
them using an appropriate object.

Example:

char c;
cin.get(c); // get a character from keyboard
// and assign it to ¢
while(c '= '\n')
{
cout << ¢; // display the character on screen
cin.get(c); // get another character

}

This code reads and displays a line of text (terminated by a newline character). Remember,
the operator >> can also be used to read a character but it will skip the white spaces and
newline character. The above while loop will not work properly if the statement

cin >> c;

is used in place of

cin.get(c);

rote

Try using both of them and compare the results.




Managing Console I/ O Operations —9295

The get(void) version is used as follows:

char c¢;
¢ = cin.get(); // cin.get(c); replaced

.....

The value returned by the function get() is assigned to the variable c.

The function put(), a member of ostream class, can be used to output a line of text,
character by character. For example,

cout.put('x');

displays the character x and
cout.put(ch);

displays the value of variable ch.

The variable ch must contain a character value. We can also use a number as an argument
to the function put(). For example,

cout.put(68);

displays the character D. This statement will convert the int value 68 to a char value and
display the character whose ASCII value is 68.

The following segment of a program reads a line of text from the keyboard and displays it
on the screen.

char ¢;
cin.get(c); // read a character

while(c != '\n")
{

cout.put(c); // display the character on screen
cin.get(c);

}

Program 10.1 illustrates the use of these two character handling functions.



296 @ Object-Oriented Programming with C++

#include <jostream>

using namespace std;
int main()

int count = 0;
char c;

cout << "INPUT TEXT\n";
cin.get(c);
while(c = *\n")
{
cout.put(c);
count++;
cin.get(c);
cout << "\nNumber of characters = " << count << "\n";

return 0;

PROGRAM 10.1

Input
Object Oriented Programming
Output
Object Oriented Programming
Number of characters = 27

rode

When we type a line of input, the text is sent to the program as soon as we press the
RETURN key. The program then reads one character at a time using the statement
cin.get(c); and displays it using the statement cout.put(c);. The process is terminated
when the newline character is encountered.

getline() and write() Functions

We can read and display a line of text more efficiently using the line-oriented input/output
functions getline() and write(). The getline() function reads a whole line of text that ends
with a newline character (transmitted by the RETURN key). This function can be invoked
by using the object cin as follows:



e e Managing Console I/ O Operations 9297

1
.

“cin.getiine (Tine, size);]

This function call invokes the function getline() which reads character input into the
vuriable line. The reading is termunated as soon as either the newline character ‘An’ 1s
encountered or size-1 characters are read (whichever oceurs first). The newline character is
read but not saved. Instead, it is replaced by the null character. For example, consider the

llowing code:

char name[20];
cin.getline(name, 20);

Assume that we have given the following input through the keyboard:
Rjarne Stroustrup <press RETURN>

This input will be read correctly and assigned to the character array name. Let us suppose

the input is as follows:
Object Oriented Programming <press RETURN >
In this case, the input will be terminated after reading the following 19 characters:
Object Oriented Pro
Romember, the two blank spaces contained in the string are also taken into account.
We can also read strings using the operater >> as follows:
Cim o »> name;

Hut remember cin can read strings that do not contain white spaces. This means that
ein can read just one word and not a series of words such as “Bjarne Stroustrup”. But it can
read the following string correctly:

Bjarne Stroustrup

After reading the string. cin automatically adds the terminating null character to the

Cciraractor array.

Program 10.2 demonstrates the use of >> and §

§include <iostream>
using namespace std;

(Contd)



298 @ Object-Oriented Programming with C++

int main()

{
int size = 20;
char city[20];

cout << "Enter city name: \n";
cin >> ¢city;
cout << "City name:" << city << "\n\n";

cout << "Enter city name again: \n";
cin.getline(city, size);
cout << "City name now: " << city << "\n\n";

cout << "Enter another city name: \n";
cin.getline(city, size);
cout << "New city name: " << city << "\n\n";

return 0;

PROGRAM 10.

The output of Program 10.2 would be:

First run
Enter city name:
Delhi

City name: Delhi

Enter city name again:
City name now:

Enter another city name:
Chennai

New city name: Chennai

Second run
Enter city name:
New Delhi
City name: New

Enter city name again:
City name now: Delhi

Enter anocher city name:
Greate: Bombay
New city name: Greater Bombay



Managing Console 1/ O Operations €299

rote ~
During first run, the newline character ‘\n’ at the end of “Delhi” which is waiting in the
input queue is read by the getline() that follows immediately and therefore it does not
wait for any response to the prompt ‘Enter city name again.’. The character ‘An’ is read
as an empty line. During the second run, the word “Delhi” (that was not read by cin) is
read by the function getline() and, therefore, here again it does not wait for any input to
the prompt ‘Enter city name again:’. Note that the line of text “Greater Bombay” is correctly
read by the second cin.getline(city,size); statement.

- J

The write() function displays an entire line and has the following form:

‘cout.write (line, size)

The first argument line represents the name of the string to be displayed and the second
argument size indicates the number of characters to display. Note that it does not stop
displaying the characters automatically when the null character is encountered. If the size
is greater than the length of line, then it displays beyond the bounds of line. Program 10.3
illustrates how write() method displays a string.

#include <iostream>
#include <string>

using namespace std;

int main()
{
char * stringl = "C++ ";
char * string2 = "Programming";
int m = strlen(stringl);
int n = strlen(string2);

for(int i=1; i<n; i++)

{
cout.write(string2,i);
cout << "\n";

J

for(i=n; i>0; i--)

{
cout.write(string2,i);
cout << "\n";

(Contd)



300e Object-Oriented Programming with C++

// concatenating strings
cout.write(stringl,m).write(string?,n);

cout << "\n",

// crossing the boundory
cout.write(stringl,10);

return 0;

PROGRAM 10.3 |

Look at the output of Program 10.3:

P

Pr

Pro

Prog

Progr
Progra
Program
Programm
Programmi
Programmin
Programming
Programmin-
Programmi
Programm
Program
Progra
Progr

Prog

Pro

Pr

p

C++ Programming
C++ Progr

The last line of the output indicates that the statement
cout.write(stringl, 10);
displays more characters than what is contained in stringl.
It is possible to concatenate two strings using the write() function. The statement

cout.write(stringl, m).write(string2, n);



